In the given figure, \(DE \parallel AB\) and \(DF \parallel AC\). Prove that \(EF \parallel BC\).
 
22.svg
 
Proof:
 
In \(\triangle AGB\), \(DE \parallel AB\), then by Thales theorem We have, 

\(\frac{AD}{DG} =\)
---- (\(1\))

In \(\triangle AGC\), \(DF \parallel AC\), then by Thales theorem, we have:

\(\frac{AD}{DG} =\)
---- (\(2\))

From equations (\(1\)) and (\(2\)), we have:

\(\frac{BE}{EG} =\)


Applying converse of Thales theorem We have, 

\(EF \parallel\)


Hence, we proved.
Answer variants:
\(BC\)
\(\frac{CF}{FG}\)
\(\frac{BE}{EG}\)
\(\frac{CF}{FG}\)