Suhesh explores a pattern:
 
\(1 = 1^2\),

\(1 + 3 = 4 = 2^2\),

\(1 + 3 + 5 = 9 = 3^2\), and so on.
 
1. The sum of the first ​40​ odd numbers is:
 
2. The ​13​\(^{th}\) odd number is:
 
3. The sum of the first \(n\) odd numbers equals:
 
4. If ​625​ is the sum of the first ​25​ odd numbers, then adding the ​26​\(^{​th​}\) odd number gives: