Suhesh explores a pattern:
\(1 = 1^2\),
\(1 + 3 = 4 = 2^2\),
\(1 + 3 + 5 = 9 = 3^2\), and so on.
1. The sum of the first 40 odd numbers is:
2. The 13\(^{th}\) odd number is:
3. The sum of the first \(n\) odd numbers equals:
4. If 625 is the sum of the first 25 odd numbers, then adding the 26\(^{th}\) odd number gives: