Prove that \((6p) × (4c) × (p + 2)\) \(=\) 24\(p^{2}  c\) \(+\) 48\(pc\).
 
Proof:
 
\((6p) × (4c)\) \(=\)
 
\(\times\) \((p + 2)\)
 
The above product is expanded using .
 
The first term is expanded as follows:
 
24\(pc\)\(\times\) \(p\) \(=\) 24\(p^{1+1}  c\)   [By ]
 
\(=\) 24\(p^{2}  c\)
 
The second term is expanded as follows:
 
24\(pc\)\(\times\) \(2\) \(=\) 24 \(\times 2\) \(p \times c\)
 
\(=\) \(pc\)
 
Combine the terms.
 
\((6p) × (4c) × (p + 2)\) \(=\) 24\(p^{2}  c\) + \(pc\).
 
Hence, proved.