General expression for \((a+b)(a-b)\):
Using the distributive property of multiplication, we expand the expression \((a+b)(a-b)\) as follows:
 
\((a+b)(a-b)\) \(=\) \((a+b)a - (a+b)b\)
 
\(=\) \(a^2 + ba - ab -b^2\)
 
\(=\) \(a^2 + ab - ab -b^2\)    [Since \(ba = ab\)]
 
\(=\) \(a^2 - b^2\)
 
Therefore, \((a+b)(a-b)\) \(=\) \(a^2 - b^2\). 
Identity : (a + b)(a − b)= a2b2
Geometrical proof of identity:
Now, we construct a figure to understand the concept.
 
pic 3.png
 
Then we construct a rectangle using the above information.
 
In the given figure, \(AB = AD = a\).

So, the area of square \(ABCD = a^2\).
 
pic 2.png
 
Also, \(SB = DP = b\). Then the area of the rectangle \(SBCT = ab\).
 
Similarly, the area of the rectangle \(DPRC = ab\). And, the area of the square \(TQRC = b^2\).
 
Area of the rectangle \(DPQT = ab − b^2\).
 
Hence, \(\text{the area of the rectangle APQS = The area of square ABCD}\) \(\text{– area of rectangle STCB}\) \(\text{+ area of rectangle DPQT}\).
 
=a2ab+(abb2)=a2ab+abb2=a2b2
 
Therefore, (a + b)(a − b)= a2b2.
Example:
Simplify (4x + 8)(4x  8) using the identity.
 
First, develop the given (4x + 8)(4x  8) expression using the identity (a + b)(a − b)= a2b2.
 
Here, \(a = 4x\); \(b = 8y\).
 
(4x + 8)(4x8)=(4x)2(8)2=42×x2(8)2=16x264
 
Therefore, (4x + 8)(4x  8) \(=\) 16\(x^2 -\)64.