Show that \((a + s)(a + s)\) \(=\) \(a^2+ 2as + s^2\).

Proof:
 
\((a + s) (a + s)\) \(=\) \((a+s) a + (a + s)s\) [By ]
 
\(=\) \((a × a) + (s × a) + (a \times s) + (s × s)\)
 
\(=\) \(a^{1+1} + sa + as + s^{1+1}\) [By ]
 
\(=\) \(a^{2} + as + as + a^{2}\) [Since ]
 
\(=\) \(a^{2} + 2as + s^{2}\) []
 
Therefore, \((a + s) (a + s)\) \(=\) \(a^{2} + 2as + s^{2}\).
 
Hence, proved.