Two equal chords \(ST\) and \(UV\) of a circle when produced intersect at a point \(P\). Prove that \(PT= PV\).
 
Proof: 
 
Given: Two equal chords \(ST\) and \(UV\) of a circle intersecting at a point \(P\).
 
To prove: \(PT = PV\)
 
Join \(OP\), draw \(OL ⊥ ST \) and .
 
Here, \(ST =UV\). 
 
Therefore,      [Equal chords are equidistant from the centre]
 
In \(△OLP\) and \(△OMP\),
 
\(OL = OM\)
 
\(∠OLP=∠OMP\) [right angle] and
 
\(OP =OP\)  [common side]
 
Therefore, \((△OLP≅△OMP)\) [RHS congruence rule] 
 
Now, \(LP = MP\)       [by CPCT]    .....(1)
 
Now, \(ST = UV\).
 
\(\frac{1}{2}ST=\frac{1}{2}UV\) 
 
\(TL=VM\)         .....(2) [perpendicular draw from centre to the circle bisects the chord ]
 
On subtracting (2) from (1) , we get
 
.
 
Hence, proved.