Easy.png
In a circle, two chords of equal length cut each other at a point inside the circle. Verify that the line drawn from the centre to the point of intersection bisects the angle between the chords.
 
Explanation:
 
circle session 4 question1.png
 
Draw \(OM\) perpendicular \(AB\) & \(ON\) perpendicular \(CD\). 
 
In \(∆OMP\) & \(∆ONP\),
 
\(\angle M= \angle N=\)\(^°\)
 
\(OP=\)          []
 
\(OM=\)  
 
 [ ]
 
Therefore, \(∆OMP≅∆ONP\)  ———-[R.H.S]
 
Hence, \(∠1=∠2\)     ———–[]