Hard.png
Prove that a trapezium having equal non-parallel sides is a cyclic.
 
Proof: 
 
circle session 4 ques 5 IMAGE 2.png
 
Draw \(NO\) perpendicular \(KL\) and \(MP\) perpendicular \(KL\).
 
In \(∆NOK\) and \(∆MPL\),
 
\(∠O=∠P= \)\(^°\)
 
\(KN=\) [given]
 
\(NO=\) [distance between parallel lines is same]
 
Therefore, \(∆NOK≅∆MPL\) [By ]
 
\(∠K=∠\) [by ]  ----(1)
 
\(∠1=∠2\) [by c.p.c.t]
 
In trapezium \(KLMN\),  \(\angle MNK +\angle NKL = \)\(^\circ\)
 
[In a trapezium, angles on the non-parallel sides are supplement to each other]
 
\(\angle  MNK + \angle KLM= \)\(^\circ\)  [from (1), \(\angle K = \angle L\)] ----------(2)
 
From (2), we can see that sum of opposite angles are supplementary.
 
Hence, \(KLMN\) is a cyclic quadrilateral.