1. In the Fig. we have \(∠PQR= ∠PRQ\), \(∠3 = ∠4\). Show that \(∠1 = ∠2\).
 
EUCLID_TRI - Copy (2).png
 
Proof:
 
\(∠PQR= ∠PRQ\)     .....(1)
 
\(∠4=∠3\)   .....(2)   
 
By Euclid axiom \(3\)
 
We get the result.
 
\(∠1=∠2\).
 
2. In the Fig., we have \(PR = SR\), \(RQ = RT\). Show that \(PQ = ST\).
 
euclid-tritri.png
 
Proof:
 
\(PR = SR\) ---(1)
 
\(RQ = RT\) ----)2)
 
By Euclid axiom \(2\),
Answer variants:
if equal are added to equals, the wholes are equal.
if equal are subtracted from equal, the remainders are equal.