1.  Derive the given question using appropriate Euclid’s axiom : Look at the Figure.
 
YCIND_240320_6122_euclid_10.png
 
Show that length \( AG>\) sum of lengths of \(AB + BC + CD\).
 
Answer:
\(AB + BC + CD\) =
 
\( AB+BC+CD+DE+EF+FG\) =  
 
+  \(DE+EF+FG\) =
 
Therefore, length of \(AG>\) Sum of length of \(AB + BC + CD\).
 
 
2.  Workout the given question using appropriate Euclid’s axiom : In the Figure, we have \( AB= BC\), \( BX= BY\). Show that \( AX= CY\).
 
YCIND_240320_6122_euclid_11.png
 
Taking 
 
\( AB= BC\)       .....(1)
 
\(BX= BY\)                   .....(2)
 
(2) from (1), we get
 
\( AB− BX =\) \(−BY\)
 
By Euclid Third axiom: 'If  are subtracted from  ,the remainder are equal.'
 
Thus \( AX= CY\)
 
Hence, verified.