In the figure, \(∠Q > ∠R\), \(PA\) is the bisector of \(∠QPR\) and \(PM ⊥ QR\). Prove that \(∠APM=\frac{1}{2}(∠Q−∠R)\).
 
YCIND_240306_6084_lines and angles_27.png
 
 Proof:
 
\(PA\) is bisector of \(∠QPR\) .
 
Therefore, \(∠QPA=∠APR\)  ----- (1)
 
In \(△ PQM\), by angle sum property of triangles,
 
\(∠PQM+∠PMQ+∠QPM=\)\(^°\)
 
\(∠PQM+\)\(^°+∠QPM=\)\(^°\)
 
\(∠PQM=\)\(^°−∠QPM\)
 
\(∠Q=\)\(^°−∠QPM\)  --------(2)
 
Again, in \(△ PMR\), by angle sum property of triangles,
 
\(∠PMR+∠PRM+∠RPM=\)\(^°\)
 
\(^°+∠PRM+∠RPM=\)\(^°\)
 
\(∠PRM=\)\(^°−∠RPM\)
 
\(∠R=\)\(^°−∠RPM\)  -------.(3)
 
Subtracting (3) from (2), and simplifying then we get, 
 
\(=2∠APM\) (From (1))
 
\(∠APM=\frac{1}{2} [∠Q−∠R]\)