In the Image  , \(∠ L> ∠M\), \(KB\) is the bisector of \(∠LKM\) and \(KA⊥ LM\). Demonstrate that \(∠BKA=\frac{1}{2}(∠L−∠M)\).
 
2025-09-10 06_25_44-2025_09_09_23_03_47_Exemplar_Exercise_Problems_XXVI_Personal_Microsoft_Edge - Pa.png
 
\(∠LKB=∠BKM\)  (\(KB\))
 
In \(△KLA\), 
 
\(∠L=\)\(^°−∠LKA\)  --------(2)
 
Again, in \(△KAM \),
 
\(∠M\)=\(^°−∠MKA\)  -------.(3)
 
 
\(∠L−∠M=\) \(∠BKA\)