Hard.png
In parallelogram \(LMNO\), two points \(P\) and \(Q\) are taken on diagonal \(MO\) such that \(O P= MQ\) (see Fig.).
 
session V 7th sum pic 3.png
 
Justify that :
 
(i) \(∆LPO ≅ ∆NQM\)
 
(ii) \(LP = NQ\)
 
(iii) \(∆LQM ≅ ∆NPO\)
 
(iv) \(LQ = NP\)
 
(v) \(LPNQ\) is a parallelogram
 
Solution
 
Given:
 
In parallelogram \(LMNO\), two points \(P\) and \(Q\) are taken on diagonal \(MO\) such that \(O P= MQ\)
 
session V 7th sum pic 3.png
 
(i) To Prove: \(∆LPO ≅ ∆NQM\)
 
Proof:
 
As \(LMNO\) is a parallelogram.
 
\(∠LOM =∠ NMO\) [] ------(1)
 
\(∠LMO = ∠NOM\)  []  ------(2)
 
Now, in \(∆LPO \)and \(∆NQM\), we have
 
\(LO=\)   [Opposite sides of a parallelogram\(LMNO\) are equal]
 
\(PO =\)  [Given]
 
\(∠LOP= ∠NMQ\) [alternate interior angles are equal]
 
Hence, \(∆LPO ≅ ∆NQM \) [By ]
 
 
(ii) To Prove: \(LP = NQ\)
 
Proof:
 
As, \(∆LPO ≅ ∆NQM\)  [from (i)]
 
\(LP =\) [By C.P.C.T.] ----(3)
 
 
(iii) To Prove: \(∆LQM ≅ ∆NPO\)
 
Proof:
 
Now, in \(∆LQM\) and \(∆NPO\), we have
 
\(QM =\) [Given]
 
\(∠LMQ =∠NOP\) [Alternate interior angles are equal]
 
\(LM = NO\) [ Opposite sides of a parallelogram  \(LMNO\) are equal]
 
Hence, \(∆LQM≅ ∆NPO \)[By ]
 
 
(iv) To Prove: \(LQ = NP\)
 
Proof:
 
As, \(∆LQM ≅ ∆NPO \) [from (iii)]
 
\(LQ =\) [] ------(4)
 
 
(v) To Prove: \(LPNQ\) is a parallelogram
 
Proof:
 
In a quadrilateral \(LPNQ\),
 
Opposite are equal. [From (3) and (4)]
 
We know that, If each pair of opposite sides of a quadrilateral is equal, then it is a parallelogram.
 
Hence, \(LPNQ\) is a parallelogram.