Hard.png
Consider a parallelogram \(LMNO\) in which the diagonal \(LM\) bisects one of its angles \(\angle A\). Verify that it is a rhombus
 
Proof:
 
Consider a parallelogram \(LMNO\) such that its diagonal \(LN\) bisects \(∠L\).
 
Thus, \(∠NLM=∠NLO\)         .....(1)
 
session 10 ques 6 Image 3.png
 
To Prove: \(LMNO\) is a rhombus.
 
Explanation:
 
Given, \(LMNO\) is a parallelogram.
 
Therefore, \(LM || NO\) and  is the transversal.
 
Therefore, \(∠NLM=∠\)  []
 
Again, \(LO || MN\) and \(LN\) is the transversal.
 
Therefore, \(∠NLO=∠\)  []
 
So, \(∠LNO=∠LNM\)           [Since, \(∠NLM=∠NLO\)]         .....(2)
 
Also, \(∠L=∠N\)  [opposite angles of parallelogram are equal]
 
\(\frac{1}{2}∠L=\frac{1}{2}∠\)
 
From (1) and (2)
 
\(∠NLO=∠\)
 
\(NO=\)   [sides opposite to the equal angles are equal]
 
As, \(LM = NO\) and \(LO = MN\) [opposite side of parallelogram are equal]
 
Therefore, \(LM = MN = NO = LO\)
 
Thus, all sides are equal.
 
So, \(LMNO\) is a rhombus.
 
Hence, proved.