In \(\triangle ABC\) and \(\triangle PQR\), \(AC = PR\), \(CO = RM\), and the median \(AO = PM\). Prove that \(\triangle AOB \cong \triangle PMQ\).
Proof:
\(\triangle AOC \cong \triangle PMR\). [\(By\) \(Congruency\) \( rule\)]
\(\angle ACO = \angle PRM\)
\(CO = OB\) and \(RM = MQ\) ( )
\(\triangle AOB \cong \triangle PMQ\). ( \(Congruency\) \(rule\))