59.svg 
 
In \(\triangle ABC\) and \(\triangle PQR\), \(AC = PR\), \(CO = RM\), and the median \(AO = PM\). Prove that \(\triangle AOB \cong \triangle PMQ\).
 
Proof:
 
 \(\triangle AOC \cong \triangle PMR\). [\(By\) \(Congruency\) \( rule\)]
 
 \(\angle ACO = \angle PRM\)
 
\(CO = OB\)  and \(RM = MQ\)  ( )
 
\(\triangle AOB \cong \triangle PMQ\). ( \(Congruency\) \(rule\))