Two sides \(AB\) and \(BC\) and median \(AM\) of one triangle \(ABC\) are respectively equal to sides \(PQ\) and \(QR\) and median \(PN\) of \(∆ PQR\).
 
YCIND_241124_6816_23.png
 
Show that:
 
(i) \(∆ ABM ≅ ∆ PQN\)
 
(ii) \(∆ ABC ≅ ∆ PQR\)
 
Answer:
 
In \(ΔABM\) and \(ΔPQN\)
 
\(\frac{1}{2}BC =\frac{1}{2}QR\) 
 
\(BM\) =
 
\(ΔABM ≅ ΔPQN\) ( Rule)
 
\(∠B=∠\) [c.p.c.t]
 
(II) Now in \(ΔABC\) and \(ΔPQR\)
 
\(ΔABC ≅ PQR\) rule