Bisectors of the angles \(B\) and \(C\) of an isosceles triangle \(ABC\) with \(AB = AC\) intersect each other at \(O\). Show that external angle adjacent to \(\angle ABC\) is equal to \(\angle BOC\).
 
Proof
 
Given that \(AB = AC\).
 
\(\angle ABC = \angle \) ---- (\(1\)) [Angles opposite to equal sides are equal]
 
Here, \(OB\) is the bisector of \(\angle B\).
 
Then, \(\angle ABO = \angle OBC\)
 
Now, \(\angle ABC = \angle ABO + \angle OBC\)
 
\(= \angle OBC + \angle OBC\)
 
\(\angle ABC = 2 \angle \) ---- (\(2\))
 
Also, \(OC\) is the bisector of \(\angle C\).
 
\(\angle ACO = \angle OCB\)
 
And, \(\angle ACB = \angle ACO + \angle OCB\)
 
\(= \angle OCB + \angle OCB\)
 
\(\angle ACB = 2 \angle \) ---- (\(3\))
 
Using equations (\(2\)) and (\(3\)) in (\(1\)), we get:
 
\(2 \angle OBC = 2 \angle OCB\)
 
\(\angle OBC = \angle \) ---- (\(4\))
 
Applying angle sum property in \(\triangle BOC\), we have:
 
\(\angle OBC + \angle OCB + \angle BOC = 180^{\circ}\)
 
\(\angle OBC + \angle OBC + \angle BOC = 180^{\circ}\) [Using (\(4\))]
 
\(2 \angle OBC + \angle BOC = 180^{\circ}\)
 
\(\angle ABC + \angle BOC = 180^{\circ}\) ---- (\(5\)) [Using (\(2\))]
 
Now, \(\angle ABC + \angle ABD = 180^{\circ}\) [Linear pair]
 
\(\angle ABC = 180^{\circ} - \angle ABD\) ---- (\(6\))
 
Using equation (\(6\)) in (\(5\)), we get:
 
\(180^{\circ} - \angle ABD + \angle BOC = 180^{\circ}\)
 
\(180^{\circ} - 180^{\circ} - \angle ABD + \angle BOC = 0\)
 
\(\angle BOC = \angle \)
 
 
Therefore, the external angle adjacent to \(\angle ABC\) is equal to \(\angle BOC\).
 
Hence, we proved.