If \(A = \{3,7,11\}\) and \(B = \{2,6\}\) then
 
(i) finds \(A \times B\) and \(B \times A\).
 
(ii) Is \(A \times B = B \times A\)? If not, why?
 
(iii) Show that \(n(A \times B) = n(B \times A) = n(A) \times n(B)\)
 
Answer:
 
(i) \(A \times B =\)
 
\(B \times A =\)
 
(ii) Since all the ordered pairs of \(A \times B\) and \(B \times A\) are
, then \(A \times B\)
\(B \times A\).
 
(iii) \(n(A) =\)
 
\(n(B) =\)
 
\(n(A \times B) =\)
 
\(n(B \times A) =\)
 
Therefore, \(n(A \times B)\)
\(n(B \times A)\)
\(n(A) \times n(B)\).
Answer variants:
2,3,2,7,2,11,6,3,6,7,6,11
\(2\)
not equal
\(\neq\)
3,2,3,6,7,2,7,6,11,2,11,6
\(6\)
\(=\)
\(3\)