Answer variants:
Check the distributive property \(p(A+B) = pA+ pB\) of the given matrices, where \( p = 4\).
If \(A =\begin{bmatrix}
3 & 8 & 12\\
6 & 13 & -3\\
-3 & 8 & -3
\end{bmatrix}, B = \begin{bmatrix}
3 & 2 & 3\\
5 & -3 & -4\\
3 & -5 & -12
\end{bmatrix}\)
3 & 8 & 12\\
6 & 13 & -3\\
-3 & 8 & -3
\end{bmatrix}, B = \begin{bmatrix}
3 & 2 & 3\\
5 & -3 & -4\\
3 & -5 & -12
\end{bmatrix}\)
\(A + B\) matrix is
\(p(A + B)\) matrix is
\(pA\) matrix is
\(pB\) matrix is
\(pA+ pB\) matrix is
The distributive property of the matrix \(p(A+B)\) \(pA+ pB\)