Show that the bisectors of angles of a parallelogram form a rectangle.
 
Given: A parallelogram \(ABCD\).
 
\(AP\), \(BP\), \(CR\) and \(DR\) are bisectors of \(A\), \(B\), \(C\) and \(D\) respectively.

The intersection of \(DR\) and \(AP\) is \(S\), and \(BP\) and \(CR\) is \(Q\).
 
P_21.png
 
Since \(ABCD\) is a parallelogram, \(AB || DC\)
 
Adjacent angles of a parallelogram are .

In \(ΔAPB\), \(∠DAB + ∠CBA =\) \(^\circ\)

\(\frac{1}{2}∠DAB + \frac{1}{2} ∠CBA = \frac{1}{2}\times\) \(^\circ\)

\(∠PAB + ∠PBA = 90^\circ\) []

Sum of the angles of a triangle is \(180^\circ\).
 
\(∠APB + ∠PAB + ∠ PBA = 180^\circ\)

\(∠APB + 90^\circ = 180^\circ\)
 
\(∠APB = 180^\circ - 90^\circ\)

\(∠APB =\) \(^\circ\)

Similarly, we can prove \(∠DRC = 90^\circ\), \(∠PSR = 90^\circ\) and \(∠PQR = 90^\circ\).

So, \(PQRS\) is a quadrilateral with all the internal angles \(90^\circ\).

Thus, \(PQRS\) is a rectangle.
 
Hence, proved.