Verify thattanθ1cotθ+cotθ1tanθ=1+secθcosecθ.
 
Proof:
 
L.H.S \(=\) tanθ1cotθ+cotθ1tanθ
 
=tanθ11iθ+1iθ1tanθ=tanθtanθ1iθ1iθtanθ1=i2θiθ11iθiθ1=i2θ1iθtanθ1=tan3θ1iθ(tanθ1)=(iθ1)(i2θ+tanθ+i)iθ(tanθ1)=i2θ+tanθ+1iθ=tanθ+1+1tanθ=tanθ+1+cotθ=iθcosθ+1+iθsinθ=1+sin2θ+cos2θiθ.sinθ=1+iiθ.sinθ=1+1iθ1sinθ=1+iθ.iθ
 
\(=\) R.H.S
 
Hence the \(LHS=RHS\)