If \(\cot \theta + \tan \theta = x\) and \(\sec \theta - \cos \theta = y\), then prove that \((x^2 y)^{\frac{2}{3}} - (x y^2)^{\frac{2}{3}} = 1\).
 
 Proof: 
 
\(x = \cot \theta + \tan \theta\)

- - - - - (1)

\(y = \sec \theta - \cos \theta\)

- - - - - (2)

\(x^2y = \)


\((x^2 y)^{\frac{2}{3}}= \frac{1}{\cos^2 \theta}\)

\(xy^2 = \frac{\sin^3 \theta}{\cos^3 \theta}\)

\((x y^2)^{\frac{2}{3}} =\)


LHS \(= (x^2 y)^{\frac{2}{3}} - (x y^2)^{\frac{2}{3}}\)



\(= 1 = \) RHS

Hence, proved.
Answer variants:
\(= \frac{1}{\sin \theta \cos \theta}\)
\(\frac{\sin^2 \theta}{\cos^2 \theta}\)
\(= \frac{1}{\cos^3 \theta}\)
\(= \frac{\cos^2 \theta}{\cos^2 \theta}\)
\(= \frac{\sin^2 \theta}{\cos \theta}\)