Login
Home
TOP
Send feedback
Login
Subjects
Maths CBSE Live product
Class 10
Introduction to trigonometry
Trigonometric Identities - II
2.
Exemplar - Prove the following
Question:
2
m.
Prove that \((sin^4 \ \theta - cos^4 \ \theta + 1) cosec^2 \ \theta = 2\).
Proof
:
(
sin
4
θ
−
cos
4
θ
+
1
)
cosec
2
θ
By simplyfing this then we get,
By applying the identity
and simplyfing this then we get,
\(=\)
(
sin
2
θ
+
sin
2
θ
)
cosec
2
θ
\(= 2 \ sin^2 \ \theta \ cosec^2 \ \theta\)
\(= 2\)
Answer variants:
[
(
sin
2
θ
−
cos
2
θ
)
(
1
)
+
1
]
cosec
2
θ
(
sin
2
θ
+
sin
2
θ
)
cosec
2
θ
1
−
cos
2
θ
=
sin
2
θ
(
sin
4
θ
−
cos
4
θ
+
1
)
cosec
2
θ
Login
or
Fast registration
Previous task
Exit to the topic
Next task
Send feedback
Did you find an error?
Send it to us!