Prove that \((sin^4 \ \theta - cos^4 \ \theta + 1) cosec^2 \ \theta = 2\).
 
Proof:
 
(sin4θcos4θ+1)cosec2θ
 
By simplyfing this then we get,
 
By applying the identity
and simplyfing this then we get, 
 
\(=\)(sin2θ+sin2θ)cosec2θ
 
\(= 2 \ sin^2 \ \theta \ cosec^2 \ \theta\)
 
\(= 2\)
Answer variants:
[(sin2θcos2θ)(1)+1]cosec2θ
(sin2θ+sin2θ)cosec2θ
1cos2θ=sin2θ
(sin4θcos4θ+1)cosec2θ