If \(\alpha\) and \(\beta\) are the roots of the equation \(2x^2 - 3x +5 = 0\), form a quadratic equation whose roots are \(\frac{\alpha^2}{\beta}\) and \(\frac{\beta^2}{\alpha}\).
The equation is .
Answer variants:
\(9x^2-28x+3=0\)
\(50x^2-133x+20=0\)
\(3x^2-28x+3=0\)
\(20x^2+63x+50=0\)
\(x^2-12x+8=0\)