If \(\alpha\), \(\beta\) and \(\gamma\) are the zeroes of the cubic polynomial 3x310x2+9x2, check whether 1,2,13  are the zeroes of the cubic polynomial and verify the relation between the zeroes and the coefficients of the polynomial.
 
Answer:
 
Let 1,2,13 be the \(\alpha, \beta, \gamma\) of the given cubic polynomial.
 
Then, \(p(\alpha) =\)
 
\(p(\beta) = \)
 
\(p(\gamma) =\)
 
\(\alpha + \beta + \gamma\)\( -\frac{b}{a}\)
 
 \(\alpha \beta + \beta \gamma + \gamma \alpha\)\( \frac{c}{a}\)
 
\(\alpha \beta \gamma\) \( -\frac{d}{a}\)