Let \(ABCD\) be a quadrilateral such that the diagonal \( BD \) is the internal bisector of both \( \angle B \) and \( \angle D \). Determine that:
 
session II ques 4.png
 
(i) \(\Delta ABD \sim \Delta CBD\)
 
(ii) \(AB=BC\)
 
Proof

\(\angle ADB =\) ()
 
\(\angle ABD =\)  ()
 
Thus, \(\Delta ABD \sim \Delta CBD\) [by ].
 
Then corresponding sides are proportional to each other, 
 
ABi=BDBD=iCD
 
\(\frac{AB}{BC}=\frac{BD}{BD}\)
 
\(\Rightarrow \frac{AB}{BC}=1\)
 
\(\Rightarrow AB = BC\).