Easy.png
The perpendicular bisector of a chord \(AB\) of a circle intersects it at \(P\) and \(Q\). Demonstrate that \(arc \ PEA\) is equal to \(arc\ PFB\).
 
Proof: 
 
Let \(PQ\) be the perpendicular bisector of \(AB\), which intersects it at \(M\) and always passes through the centre of the circle \(O\).
 
Now, Join \(AP\) and \(BP\).
 
circle session 3 ques2 image2.png
 
In \(△ APM\) and \(△ BPM\),
 
\(AM =\)      ()
 
\(∠PMA=∠PMB=\)\(^°\)
 
\(PM = \)        ()
 
Thus, \(△APM≅△BPM\) [
 
Therefore, \(PA =\)
 
If two chords (\(PA = PB\)) are equal, then the corresponding arcs are congruent.
 
That is, \(arc\) \(PEA ≅ arc\) \(PFB\).