Medium.png
Take a triangle \(ABC\), mark the midpoints \(D\), \(E\) and \(F\) on its sides \(AB\), \(BC\) and \(CA\). Prove that connecting these mid-points produces \(four\) congruent triangles inside the original triangle.
 
Proof: 
 
YCIND_240307_6088_quadrilateral_47.png
 
In \(△ ABC\), \(D, E, F\) are the mid-points of the sides \(AB, BC\) and \(CA\) respectively. 
 
Then, \(AD = \) \(=\frac{1}{2} AB\), 
 
\(BE = EC =\frac{1}{2} BC\) and  
 
\(AF =\) \(= \frac{1}{2} AC\)  
 
Then, using the mid-point theorem,
 
\(EF∥AB\) and \(EF=\frac{1}{2}\)\(=AD = BD \) --------\((1)\)
 
\(ED∥AC\) and \(ED=\frac{1}{2}\)\(=AF=CF\) and  ----------\((2)\)
 
\(DF∥BC\) and \(DF=\frac{1}{2}\)\(=BE=CE\)   -----------\((3)\)
 
In \(△ ADF\) and \(△ EFD\),
 
\(AD = EF\)  [from \((1)\)]
 
\(AF = DE\)  [from \((2)\)]
 
\(DF = DF\)  (common)
 
Therefore, \(△ADF≅△EFD\)     []
 
Similrly,\(△DEF≅△EDB\) and
 
\(△DEF≅△CFE\)
 
So, \(△ ABC\) is divided into four congruent triangles.
 
Hence, proved.