blue1.png
 
In a parallelogram \(ABCD\), where \(P\) bisects side \(BC\) and the angle \(\angle BAP\) equals \(\angle DAP\), prove that \(AD = 2CD\).
 
M_2_1.png
 
Proof:
 
\(ABCD\) is a parallelogram.

Therefore, \(AD∥BC\) and \(AB\) is transversal.
 
Then \(∠A+∠B =\) \(^°\) [sum of cointerior angles is \(^°\)]
 
In \(△ ABP\), \(∠PAB+∠B+∠BPA=180^°\)
 
\(\frac{1}{2}∠A+180°−∠A+∠BPA=180^°\)           [From \(∠B=180^°−∠A\)]

\(∠BPA−\frac{∠A}{2}=0^°\)

\(∠BPA=\frac{∠A}{2}\)        .....(2)

Since, \(∠BPA=∠BAP\)
 
\(AB=BP\) []
 
On multiplying both sides by \(2\), we get   \(2AB = 2BP\)
 
\(2AB=BC\) [As \(P\) is the mid point, ]
 
[since, \(ABCD\) is a parallelogram, then \(AB = CD\) and \(BC = AD\)]
 
Hence, proved.