green1.png
 
In a parallelogram \(PQRS\), the diagonals \(PR\) and \(QS\) are equal. Prove that \( \angle PQR = 90°\). Hence show that \(PQRS\) is a rectangle.
 
Proof:
 
Let \(PQRS\) be a parallelogram.

In \(∆PQR\) and \(∆QRS\),

\(PR = QS\)      [Given]
 
\(PQ = RS\) []
 
\(QR = RQ\)     [Common side]
 
Therefore, \(∆PQR ≅ ∆QRS\) []
 
So, \(∠PQR = ∠QRS\) [By C.P.C.T.] ----(1)

Now, \(PQ || RS\) and \(QR\) is a transversal. 
 
Therefore, \(∠PQR + ∠QRS = 180^°\)  [Co-interior angles of parallelogram] ----- (2)
 
From (1) and (2), we have \(∠PQR = ∠QRS =\)\(^°\)
 
That is, \(PQRS\) is a parallelogram having an angle to \(90^°\).
 
Hence, \(PQRS\) is a rectangle.