Medium.png
Demomstrate that the diagonals of a rhombus intersect each other \(90^\circ\)
 
Proof: 
 
Consider the rhombus \(ABCD\) 
YCIND_240320_6121_quad_2.png
 
We know that \(AB = BC = CD = DA\)
 
Now, in \(∆ AOD\) and \(∆ COD\), \(OA =\) ( )
 
\(OD =\)  ()
 
\(AD =\) 
 
Therefore, \(∆ AOD ≅ ∆ COD\) ()
 
This gives, \(∠ AOD = \) (CPCT)
 
But, \(∠ AOD + ∠ COD =\) \(^\circ\) ()
 
So, \(2∠ AOD = 180^°\)
 
\(∠ AOD = 90^°\)
 
So, the diagonals of a rhombus are \(90^\circ\) to each other.
 
Hence proved.