\(BE\) and \(CF\) are two equal altitudes of a triangle \(ABC\). Using \(RHS\) congruence rule, prove that the triangle \(ABC\) is isosceles.
 
Proof:
 
In \(ΔBEC\) and \(ΔCEB\),
 
\(∠E=∠F=90^{\circ}\)   
 
\(BC=BC\) -[common] 
 
\(BF=CF\) [Given]
 
Therefore by rule, \(ΔBEC ≅ ΔCEB\)
 
\(∠C=∠B\) [C.P.C.T]
 
In ΔABC, \(∠C=∠\)
 
That is, \(ABC\) is an isosceles triangle.
 
Hence, we proved.