\(AD\) is an altitude of an isosceles triangle \(ABC\) in which \(AB = AC\).
 
Show that:
 
(i) \(AD\) bisects \(BC\).
 
(ii) \(AD\) bisects \(∠A\).
 
Proof:
 
(i) In \(∆ADB\) and \(∆ADC\)
 
\(∠ADB=∠\) [Right angles] 
 
\(AB = AC\) [Given]               
 
\(AD = AD\) [Common side]       
 
Therefore, by rule \(∆ADB ≅∆ADC\)
 
\(BD = \) [By CPCT]
 
Therefore, \(AD\) bisects \(BC\).
 
 
(ii) Since \(∆ADB ≅∆ADC\) [By SAS rule]
 
\(\angle BAD = \angle \) [By CPCT]
 
Therefore, \(AD\) bisects \(∠A\).