Bisectors of the angles \(Y\) and \(Z\) of an isosceles triangle \(XYZ\) with \(XY = XZ\) intersect each other at \(O\). Show that external angle adjacent to \(\angle XYZ\) is equal to \(\angle YOZ\).
 
Proof
 
Given that \(XY =XZ\).
 
\(\angle XYZ = \angle \) ---- (\(1\)) [Angles opposite to equal sides are equal]
 
Here, \(OY\) is the bisector of \(\angle Y\).
 
Then, \(\angle XYO = \angle OYZ\)
 
Now, \(\angle XYZ= \angle  XYO + \angle OYZ\)
 
\(= \angle OYZ + \angle OYZ\)
 
\(\angle  XYZ= 2 \angle \) ---- (\(2\))
 
Also, \(OZ\) is the bisector of \(\angle Z\).
 
\(\angle XZO = \angle OZY\)
 
And, \(\angle XZY = \angle XZO + \angle OZY\)
 
\(= \angle OZY + \angle OZY\)
 
\(\angle XZY = 2 \angle \) ---- (\(3\))
 
Using equations (\(2\)) and (\(3\)) in (\(1\)), we get:
 
\(2 \angle OYZ = 2 \angle OZY\)
 
\(\angle  OYZ = \angle \) ---- (\(4\))
 
Applying angle sum property in \(\triangle  YOZ \), we have:
 
\(\angle  OYZ + \angle OZY + \angle YOZ = 180^{\circ}\)
 
\(\angle  OYZ + \angle OYZ+ \angle  YOZ  = 180^{\circ}\) [Using (\(4\))]
 
\(2 \angle  OYZ + \angle  YOZ  = 180^{\circ}\)
 
\(\angle XYZ + \angle  YOZ  = 180^{\circ}\) ---- (\(5\)) [Using (\(2\))]
 
Now, \(\angle XYZ+ \angle  XYD = 180^{\circ}\) [Linear pair]
 
\(\angle XYZ = 180^{\circ} - \angle   XYD\) ---- (\(6\))
 
Using equation (\(6\)) in (\(5\)), we get:
 
\(180^{\circ} - \angle  XYD + \angle  YOZ  = 180^{\circ}\)
 
\(180^{\circ} - 180^{\circ} - \angle   XYD + \angle YOZ  = 0\)
 
\(\angle  YOZ  = \angle \)
 
Therefore, the external angle adjacent to \(\angle ABC\) is equal to \(\angle  YOZ \).
 
Hence, we proved.