Medium.png
Verify that if a parallelogram can be inscribed in a circle, then it must be a rectangle.
 
Proof:
 
 YCIND_240403_6137_Circles_24 (1).png
 
Given: \(ABCD\) is a cyclic parallelogram.
 
Therefore, \(∠A+∠C=\)\(^°\) []
 
\(∠A=∠\) [opposite angle of  parallelogram.]
 
Therefore, \(∠A=∠C=\)i2\(=\)\(^°\)
 
\(∠A=\)\(^°\)
 
\(∠C=\)\(^°\)
 
Similarly, \(∠B+∠D=\)\(^\circ\)
 
\(∠B=∠D =\)i2\(=\)\(^°\) [opposite of a parallelogram]
 
\(∠B=\)\(^°\)
 
\(∠D=\)\(^°\)
 
Each angle of \(ABCD\) is \(90^°\)
 
Since opposite sides are parallel and all the angles are each \(90^\circ\).
 
So, \(ABCD\) is a rectangle.
 
Hence proved.