Easy.png
Two equal chords of a circle intersect inside it. Show that the line joining their point of intersection to the centre forms equal angles with both chords.
 
Explanation:
 
circle session 4 question1 Image 2.png
 
Draw \(OM\) perpendicular \(WX\) & \(ON\) perpendicular \(YZ\). 
 
In \(∆OMP\) & \(∆ONP\),
 
\(\angle M= \angle N=\)\(^°\)
 
\(OP=\)          []
 
\(OM=\)  
 
 [ ]
 
Therefore, \(∆OMP≅∆ONP\)  ———-[R.H.S]
 
Hence, \(∠1=∠2\)     ———–[]