If  \(sin\) \(R\) \(+\) \(cos\) \(R\) \(= p\) and \(sec\) \(R\)\(+cosec\) \(R\)\(= q\), then prove that \(q(p^2 - 1) = 2p\).
 
Proof: 
 
\(p^2\) \(=\)
 
\(q\) \(=\)
 
 
After simplifying we get 
 
\(= q(p^2 - 1)\) \(=\) .
 
\(=\)
 
Hence proved
 
Answer variants:
1+2sinRcosR
2p
4p
psinRcosR
psinRcosR(2sinRcosR)