Prove that \(\frac{\cos θ}{1 + \sin θ} + \frac{1 + \sin θ}{\cos θ} = 2 \sec θ\).
 
Proof:
 
\(\frac{\cos θ}{1 + \sin θ} + \frac{1 + \sin θ}{\cos θ}\)
 
After taking LCM
 
 
After simplifing this then we get,
 
\(LCM=\)
 
 \(= 2sec\theta\)
 
\(= \) RHS
Answer variants:
\(2\times \frac{1}{2cos\theta }\)
\(2\times \frac{1}{cos\theta }\)
\(= \frac{(\cos^2 θ + \sin θ^2) + 2 + 2 \sin θ }{(1 + \sin θ)\tan θ}\)
\(= \frac{(\cos^2 θ + \sin θ^2) + 1 + 2 \sin θ }{(1 + \sin θ)\cos θ}\)