Prove that .
L.H.S \(=\)
Now, simplyfing this then we get,
\(LCM=\)
By applying the expansion of \(a^3-b^3\) then we get,
\(LHS=\)
By applying \(tan \theta= \frac{sin \theta}{cos \theta}\) , \(cot \theta = \frac{cos \theta}{sin \theta}\) and simplyfing then we get,
\(LHS=\)
Now, simplifying this then we get,
\(=\) \(1 + sec \theta \cdot cosec \theta\)
\(=\) R.H.S
Hence proved.
Answer variants: