If in quadrilateral \( ABCD\), the diagonals cut each other at \(O\) such that \(\frac{AO}{BO}=\frac{CO}{DO}\). Determine that \( ABCD\) is a trapezium.
 
Proof
 
YCIND_240214_6037_a_25.png
 
Let us draw a line \(EF||AB\) passing through the point \(O\).
 
Given \(\frac{AO}{BO} = \frac{CO}{DO}\) - - - - - (1)
 
Now, in \(\Delta ADB\),
 
\(EO || \)
 
By
 
\(\frac{AE}{DE} = \)..........(i)
 
But, \(\frac{OA}{OB}=\frac{OC}{OD}\) [given]
 
\(\Rightarrow \frac{OA}{OC}=\frac{OB}{OD}\)..........(ii)
 
From (i) and (ii), 
 
\(\frac{AE}{DE} =\)
 
Thus, in \(\Delta ADC\),
 
\(\frac{AE}{DE} = \)
 
Line \(EO\) divides the triangle in the same ratio.
 
Therefore, \(EO||\).
 
But, we know that \(EO||AB\)
 
\(EO||AB||DC\)
 
Thus, \(AB||\).
 
Hence, one pair of opposite sides of quadrilateral \(ABCD\) are parallel.
 
Therefore, \(ABCD\) is a trapezium.