In the given trapezium\( ABCD\) with parallel sides \(AB\) and \( DC\), the diagonals cross at point \( O\). Demonstrate that \(\frac{AO}{BO}=\frac{CO}{DO}\).
 
Proof:
 
YCIND_240214_6037_a_24.png
 
In \(\Delta ADC\),
 
\(EO||\)
 
By
 
So, \(\frac{AE}{DE} =\)
- - - - - (1)
 
Similarly,  in \(\Delta DBA\)
 
\(EO||\)
 
\(\frac{AE}{DE} =\)
- - - - - (2)
 
From (1) and (2) we proved the result.
Answer variants:
\(\frac{BO}{DO}\)
\(DC\)
\( \frac{AO}{DO}\)
\( \frac{AO}{CO}\)
\(\frac{BO}{CO}\)
\(AB\)