Prove that \(\frac{BE}{DE}\) \(=\) \(\frac{AC}{BC}\) if \(DB \perp BC\), \(DE \perp AB\) and \(AC \perp BC\).
 
19 Ресурс 1.svg
 
Proof:
 
Let \(\angle BAC\) be marked as \(\angle 1\), \(\angle ABC\) be marked as \(\angle 2\), and \(\angle DEB\) be marked as \(\angle 3\).
 
20 Ресурс 1.svg
 
By angle sum property of a triangle, "The sum of all three angles in a triangle is \(180^\circ\)."
 
In \(\triangle ABC\), \(\angle 1 + \angle 2 + \angle C = 180^\circ\)
 
\(\angle 1 + \angle 2 + 90^\circ = 180^\circ\)
 
   \(\longrightarrow (1)\)
 
    \(\longrightarrow (2)\)
 
On comparing \((1)\) and \((2)\), we get:
 
 
Let us now consider \(\triangle ABC\) and \(\triangle BDE\).
 
We already have proved that \(\angle 1 = \angle 3\).
 
Also,
 [Given]
 
By AA similarity criterion, "If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar."
 
Therefore,
.
 
Thus, \(\frac{BE}{DE}\) \(=\) \(\frac{AC}{BC}\).
Answer variants:
2+3=90°
ΔABCΔBDE
ACB+DEB=90°
1+2=90°
1=3