If two lines intersect, prove that the vertically opposite angles are equal.
 
Proof:
 
Let the two lines \(AB\) and \(CD\) intersect at point \(O\).
 
YCIND_240306_6084_lines and angles_22.png
 
To prove: The vertically opposite angles are equal
 
That is, we need to prove the following
 
(i) \(∠AOC=∠\)
 
(ii) \(∠AOD=∠\)
 
Explanation:
 
(i) Since, ray \(OA\) stands on line \(CD\)
 
Therefore, \(∠AOC+∠AOD=\) \(^°\) [Linear pair axiom] ------(1)
 
Similarly, ray \(OD\) stands line \(AB\).
 
Therefore, \(∠AOD+∠BOD=\)\(^°\) ------(2)
 
From (1) and (2),
 
\(∠AOC+∠AOD=∠AOD+∠BOD\)
 
\(∠AOC=\)
 
(ii) Now, ray \(OD\) stands on line \(AB\).
 
Therefore, \(∠AOD+∠BOD=\)\(^°\) -------(3)         
 
Similarly, ray \(OB\) stands on line \(CD\).
 
Therefore, \(∠DOB+∠BOC=\)\(^°\) -------(4)
 
From (3) and (4),
 
\(∠AOD+∠BOD=∠DOB+∠BOC\)
 
\(∠AOD=∠\).