In a triangle \(△ KLM\) , the internal bisector of \(∠L\) and the external bisector of \(∠KMN\) meet at a point \(V\).
 
Verify that \(∠LVM=\frac{1}{2}∠LKM\) 
 
Verification:
 
For a triangle \(△ KLM\), produce \(LM\) to \(N\) and the bisectors of \(∠KLM\) and \(∠KMN\) meet at point \(V\).
 
AR3-LA.png
 
Now, \(MV\) is a bisector of \(∠KMN\)
 
Therefore, \(\frac{1}{2} ∠KMN=∠\) ------(a)
 
Also, \(BT\) is a bisector of \(△KLM\)
 
Therefore, \(∠MLV=\frac{1}{2}∠\) ----- (b)
 
In \(△ KLM\), \(∠KMN\) is an exterior angle.
 
Therefore, \(∠KMN=∠ KLM+∠ \)
 
\(\frac{1}{2} ∠KMN=\frac{1}{2} ∠\)\(+\frac{1}{2} ∠ KLM\)
 
\(∠TCD=\frac{1}{2} ∠\)\(+\frac{1}{2} ∠ KLM\) ------(1)
 
Again, in \(△ LVM\),
 
\(∠VMN=∠LVM+∠\)  (since, Exterior angle \(=\) sum of two opposite angles)
 
\(∠VMN=∠LVM+\frac{1}{2}∠\) ------(2) [From equation (b)]
 
From (1) and (2),
 
\(\frac{1}{2} ∠\)\(+\frac{1}{2} ∠ KLM=∠LVM+\frac{1}{2}∠\)
 
\(\frac{1}{2}∠ MKL=∠LVM\)
 
That is, \(\frac{1}{2}∠ LKM=∠LVM\).