orange1.png
Let \(P\) is the mid-point of the side \(CD\) of a parallelogram \(ABCD\). The line drawn through \(C\) parallel to \(PA\) meets \(AB\) at \(Q\) and the extension of \(DA\) at \(T\). Demonstrate that \(DA = AT\) and \(CQ = QT\).
 
Proof:
 
18.JPG
 
\(ABCD\) is a parallelogram.
 
Therefore, \(BC=AD\) and \(BC∥AD\)
 
Also, \(DC=AB\) and \(DC∥AB\)
 
As, \(P\) is the mid-point of \(DC\).
 
Then, \(DP=PC=\frac{1}{2}DC\)
 
Now, \(QC∥AP\) and \(PC∥AQ\).
 
Thus, \(APCQ\) is a parallelogram.
 
Therefore, \(AQ=PC=\frac{1}{2}DC=\frac{1}{2}AB=\)     [∵DC=AB]          .....(1)
 
Now, in \(△AQT\) and \(△BQC\), \(AQ=\)             [From (1)]
 
\(∠AQT=∠\)   [vertically opposite angles] and
 
\(∠ATQ=∠\)           [alternate interior angles]
 
Therefore, \(△AQT≅△\)   [AAS congruence rule]
 
Then, \(AR = BC\)  [by rule]
 
But \(BC = \)
 
Therefore, \(AT = DA\) and \(CQ = QT\)  [CPCT rule]
 
Hence, proved.