blue1.png
Prove that if a square is inscribed so that it shares a vertex with the right angle of an isosceles right triangle, then the vertex opposite this right angle bisects the hypotenuse.
 
Proof:
 
Let \(△ ABC\) be an isosceles triangle, a square \(ADEF\) is inscribed.
 
YCIND_240307_6088_quadrilateral_32.png
 
To prove: \(CE = BE\)
 
In the isosceles \(△ ABC\),
 
\(∠A=\) \(^{\circ}\) and \(AB =\) ----(1)
 
Since, \(ADEF\) is a square.
 
\(AD = \)         [all sides of squares are equal] ----(2)
 
On subtracting (2) from (1),
 
\(AB − AD = AC − AF\) 
 
That is, \(BD =\) ----(3)

Now, in \(△CFE\) and \(△BDE\),
 
\(BD = \)         [From (3)]
 
\(DE = EF\)         [sides of square] 

Also, \(∠CFE=∠EDB=\) \(^°\)

Therefore, \(△CFE≅△\)        [SAS congruence rule]
 
Hence, \(CE=\)        []
 
Hence, proved.