Login
Home
TOP
Send feedback
Login
Subjects
Maths CBSE Live product
Class 10
Introduction to trigonometry
Trigonometric Identities - I
5.
PYQ - Prove the given equation
Question:
3
m.
Prove that:
sin
θ
1
+
cos
θ
+
1
+
cos
θ
sin
θ
=
2
cosec
θ
Proof
:
L.H.S \(=\)
sin
θ
1
+
cos
θ
+
1
+
cos
θ
sin
θ
\(LHS=\)
By applying \((a+b)^2\) identity, then we get,
\(LHS=\)
By applying the known identity then we get,
By simplyfing this then we get,
\(= 2 cosec \theta\)
\(=\) R.H.S
Hence proved.
Answer variants:
=
sin
2
θ
+
1
+
cos
θ
2
sin
θ
1
+
cos
θ
=
2
+
2
cos
θ
sin
θ
1
+
cos
θ
=
sin
2
θ
+
cos
2
θ
+
1
−
2
cos
θ
sin
θ
1
+
cos
θ
=
sin
2
θ
+
cos
2
θ
+
1
+
2
cos
θ
sin
θ
1
+
cos
θ
=
2
+
cos
θ
sin
θ
1
+
cos
θ
Login
or
Fast registration
Previous task
Exit to the topic
Next task
Send feedback
Did you find an error?
Send it to us!